
JOURNAL OF COMPUTATIONAL PHYSICS 125, 42–58 (1996)
ARTICLE NO. 0078

Capturing Shock Reflections: An Improved Flux Formula

ROSA DONAT AND ANTONIO MARQUINA*
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approximate solution at the next time level is then obtained
averaging over each cell this global solution.Godunov type schemes, based on exact or approximate solutions

to the Riemann problem, have proven to be an excellent tool to The method can be written in conservation form since it
compute approximate solutions to hyperbolic systems of conserva- uses solutions to Riemann problems which are themselves
tion laws. However, there are many instances in which a particular exact solutions of the conservation laws and, because itscheme produces inappropriate results. In this paper we consider

mimics much of the relevant physics, Godunov’s schemeseveral situations in which Roe’s scheme gives incorrect results (or
blows up all together) and we propose an alternative flux formula results in an accurate and well-behaved treatment of
that produces numerical approximations in which the pathological shock waves.
behavior is either eliminated or reduced to computationally accept- For gas dynamics simulations, Godunov’s method com-
able levels. Q 1996 Academic Press, Inc.

putes the exact solution to a Riemann problem at each
cell interface. However, most of the structure of the exact
solution is lost in the averaging process used to update1. INTRODUCTION
each cell value. This observation suggests that it may not
be worthwhile calculating the Riemann solution exactly.Shock capturing techniques for the computation of dis-
In fact, one may be able to obtain equally good numericalcontinuous solutions to hyperbolic conservation laws are

based on an old (by now) theorem of Lax and Wendroff results with an approximate Riemann solution obtained
establishing that the limit solutions of a consistent scheme by some less expensive means.
in conservation form are in fact weak solutions to the Roe’s scheme is based on a local linearization that makes
PDE and, thus, their discontinuities will propagate at the the solution of the Riemann problem a trivial task. The
right speeds. solution to Roe’s linearized Riemann problem coincides

Over the years, it has become clear that one of the with the solution to the exact problem whenever this in-
most successful strategies for designing a shock-capturing volves merely a single shock or contact discontinuity. On
scheme is to follow Godunov’s lead and use the solution the other hand, since rarefaction waves do not appear in
to the Riemann problem (the only initial-value problem linear systems, the scheme can (and does) produce non-
easy enough to be solved explicitly) as an essential building physical expansion shocks in the computed flows.
block of the scheme. Other approximate Riemann solvers, based on Roe’s

Godunov assumed that a flow solution could be repre- simplification, have emerged over the years. Their basic
sented by a series of piecewise constant states with disconti- design principle is (as in Roe’s scheme) that it might be
nuities at the cell interfaces. A piecewise constant function sufficient to find only an approximate solution to a Rie-
is a reasonable numerical representation of the solution mann problem, provided that this approximate solution
in regions of smooth flow and it is especially well suited still describes important nonlinear behavior [9, 3].
near discontinuities. The discretized flow solution is Godunov type schemes are indeed very robust in most
evolved by considering the nonlinear interaction between situations. However, they can, on occasions, fail quite spec-
its component states. Viewed in isolation, each pair of tacularly. For example, when computing shock reflection
neighboring states constitutes a Riemann problem, which problems in one dimension, most shock capturing schemes
can be solved exactly. If there is no interaction between produce an unphysical ‘‘overheating’’ near the reflecting
neighboring Riemann problems, the global solution is eas- wall [15]. In two dimensions, Roe’s method can sometimes
ily found by piecing together these Riemann solutions. The

admit solutions with an inexplicably kinked Mach stem.
Reports on approximate Riemann solver failures and

* E-mail: marquina@godella.matapl.uv.es; E-mail: donat@godella.ma- their respective corrections are abundant in the literaturetapl.uv.es. Supported by DGICYT PB94-0987, in part by a Grant from
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time supported in part by ARPA URI Grant ONR-N00014-92-J-1890. that the failures of a specific Riemann solver may usually
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be repaired by the judicious use of a small amount of where
artificial dissipation. However, this technique often implies
the tuning and re-tuning of various parameters, which de- ap 5 l p ? (ul 2 ur)
grades the automatic character of Godunov type schemes.
Moreover, the type and amount of viscosity to be added in

and lp , r p, and l p are the eigenvalues, (normalized) right
each particular deficiency is, usually, not the same, further

and left eigenvectors, respectively, of Ã 5 A(ũ) 5 A(ul ,aggravating the user.
ur), the Jacobian matrix (f(u)/u) at ũ, the ‘‘Roe mean’’

A different strategy, described by Quirk [17], is to com-
of the left and right states (see, e.g., [10]).

bine two or more solvers. With this approach, it is possible
The numerical flux formula of Roe’s method (2) is in

to control certain instabilities by changing the flavor of the
fact the flux at the origin corresponding to the Riemann

dissipation mechanism rather than increasing the absolute
problem for the constant coefficient system

level of dissipation.
Quirk’s approach is very attractive, although it still has

ut 1 A(ul , ur)ux 5 0 (3)a user-problem dependent parameter left: when and where
to use one Riemann solver in preference to another.

Our approach is similar to that of Quirk’s. We do com- with left and right states ul and ur , respectively. Roe’s
definition of A(ul , ur) guarantees (among other things)bine Roe’s solver with a Lax–Friedrichs type of scheme

to produce an entropy-satisfying, shock-capturing scheme, a Riemann solution that agrees with the exact Riemann
solution to the original non-linear system in the specialbut the two solvers are intertwined in a more intrinsic way

so that there are no adjustable parameters in the scheme. case, where ul and ur are connected by a single shock wave
or a contact discontinuity.In the present paper we address various instances in

which there is a recognized failure of Roe’s solver and However, Riemann solutions to linear systems such
as (3) consist of only discontinuities, with no rarefactionpropose an alternative flux formula that seems to alleviate

or cure the problem. waves. This can lead (and indeed it does) to numerical
approximations with entropy violating discontinuities. ToThe paper is organized as follows: In Section 2 we de-

scribe Marquina’s flux formula for systems of hyperbolic prevent these expansion shocks, the flux function in
Roe’s scheme needs to be modified. Harten and Hymanconservation laws. In the scalar case, it corresponds to a

flux formula used by Shu and Osher [22]. In Section 3 we [7] introduce an intermediate state that simulates the
diffusion introduced to a Godunov-type scheme by aapply it to Burgers’ equation and compare the numerical

results with those obtained with other well-known upwind continuous transition between the left and right states.
Roe [20] describes another modification that breaks downflux formulae. Section 4 is devoted to the analysis of the

overheating phenomenon that appears in shock reflection expansion shocks and it also eliminates the ‘‘glitches’’
(dogleg phenomenon) that appear in most first-orderexperiments and to several somewhat related questions.

In Section 5, Marquina’s scheme is used to approximate a schemes.
As usual, the one-dimensional scalar equation is a usefulslowly moving shock wave. We measure the level of noise

generated by the scheme in the downstream region of the study case and it is particularly relevant to our discussion
since it provides the starting point for Marquina’s fluxshock wave and compare it to that of Roe’s scheme. Section

6 shows the performance of the proposed flux formula in formula.
In [25], Van Leer considers the upwind-differencing first-2D flows, analyzing the classical Mach 3 step flow. Some

conclusions are drawn in Section 7. order schemes of Godunov, Roe, and Engquist-Osher (E-
O) for the inviscid Burgers equation. He observes that

2. ROE’S FLUX FORMULA, FLUX-SPLITTING the difference between the E-O scheme and Godunov’s
SCHEMES AND AN ALTERNATIVE FLUX FORMULA method lies in the treatment of transonic shocks, while

Roe and Godunov’s schemes differ only at transonic
Disregarding entropy consideration, Roe’s solver ap- expansions, where the exact Riemann solver, used in Go-

plied to a system of conservation laws in one dimension, dunov’s method, would include an expansion fan, Roe’s
method puts in a so-called expansion shock, i.e., an entropy

ut 1 (f(u))x 5 0, (1) violating discontinuity. An entropy fix is necessary to ob-
tain physically relevant numerical approximations with

yields a conservative method whose numerical flux func- Roe’s method in these situations.
tion is computed as In the scalar case, Marquina’s flux formula is a combina-

tion of Roe’s flux and a local Lax–Friedrichs (LLF from
now on) flux utilized by Shu and Osher in [22] and la-F R(ul , ur) 5

1
2 Sf(ul) 1 f(ur) 2 O

p
ulpuapr pD , (2)

beled F RF:
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F RF(ul , ur) for systems of conservation laws mimics the properties of
the scheme for the scalar conservation law.

The algorithmic description of Marquina’s flux formula
is as follows:55

f (ul) if f 9 . 0 in [ul , ur]

f (ur) if f 9 , 0 in [ul , ur]

As ( f (ul) 1 f (ur) 2 a(ur 2 ul)) else (4)
Given the left and right states, we compute the ‘‘sided’’

local characteristic variables and fluxes:
a 5 max

u[[ul,ur]
u f 9(u)u.

(5) g p
l 5 l p(ul) ? ul f p

l 5 l p(ul) ? f(ul)
g p

r 5 l p(ur) ? ur f p
r 5 l p(ur) ? f(ur)Throughout this section, [ul , ur] should be understood as

the range of u-values that lie between ul and ur .
for p 5 1, 2, ..., m. Here l p(ul), l p(ur), are the (normalized)Formula (4) is equivalent to Godunov’s flux formula
left eigenvectors of the Jacobian matrices A(ul), A(ur).(see, e.g., [12])

Let l1(ul), ..., lm(ul) and l1(ur), ..., lm(ur) be their corre-
sponding eigenvalues. We proceed as follows:

For k 5 1, ..., m,F G(ul , ur) 5Hminul#u#ur
f (u) if ul # ur

maxur#u#ul
f (u) if ul . ur

(6)
If lk(u) does not change sign in [ul , ur], then

If lk(ul) . 0 then
whenever f 9 does not change sign between the left and fk

1 5 fk
l

right states. If this is not the case, F RF is obtained by fk
2 5 0

switching to the more viscous, entropy satisfying Lax– else
Friedrichs scheme. It can be verified (see [22]) that the fk

1 5 0
LLF flux fk

2 5 fk
r

endif
F LLF(ul , ur) 5 As ( f (ul) 1 f (ur) 2 a(ur 2 ul))

else
ak 5 max

u[G(ul,ur)
ulk(u)uis monotone; hence F RF is an ‘‘entropy fix’’ for Roe’s flux.

The experiments reported in [22] and our own experi-
fk

1 5 0.5(fk
l 1 akgk

l )
mentation confirms that conservative schemes whose nu-

fk
2 5 0.5(fk

r 2 akgk
r )

merical flux function is F RF always approximate the physi-
cally relevant solution even for non-convex f. Moreover, endif
local pathologies, like the dogleg effect, either do not show

G(ul , ur) is a curve in phase space connecting ul and ur .up in numerical approximations, or are reduced to O(Dx)
For the Euler equations of gas dynamics, the fields areglitches in the first order version of the scheme. Higher
either genuinely non-linear or linearly degenerate; henceorder versions completely eliminate the pathology.
we can test the possible sign changes of lk(u) by checkingIn the convex case, the schemes of Roe and Godunov
the sign of lk(ul) ? lk(ur). Also, ak can be determined asdiffer only at transonic rarefactions; in this case we would

only need to switch to LLF when f 9(ul) , 0 , f 9(ur) but
ak 5 maxhulk(ul)u, ulk(ur)uj.we keep (4) as established because it is more general and

it works properly also for non-convex conservation laws.
Marquina’s flux formula is thenThe extension to systems of conservation laws differs

from that of [22] and follows two basic directions. On one
hand, Roe’s linearization (or any linearization, as pointed

F M(ul , ur) 5 Om
p51

(f p
1r p(ul) 1 f p

2r p(ur)), (7)out in [4]) may not always be appropriate, especially when
dealing with systems of conservation laws other than the
Euler equations for which the ‘‘Roe mean’’ might not be

where r p(ul), r p(ur) are the right (normalized) eigenvectorseasily computed (or even known). Along this line, and still
of the Jacobian matrices A(ul), A(ur).in the upstream-differencing spirit, we shall make use of

Marquina’s numerical flux is consistent, i.e.,two sets of eigenvalues and eigenvectors, one coming from
the left state and the other coming from the right state, to

F M(u, u) 5 f(u),compute the flux at a given interface.
On the other hand, the combination of Roe’s solver with

the LLF scheme is done locally. The choice of scheme is and, in fact, when applied to a constant coefficient one-
dimensional system, Marquina’s scheme is equivalent todone in each ‘‘local’’ characteristic field, thus the scheme
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Roe’s and would yield the exact solution to the Rie- remark that (7) is more general: It can be applied to non-
homogeneous fluxes, such as the flux in Burgers equationmann problem.

Notice also that when all signal speeds associated to the or the equations of gas dynamics for real gases [6].
The first-order scheme based on Marquina’s flux formulanumerical flux F M(u, v) are .0 then

is, thus,
F M(u, v) 5 f(u)

un11
j 5 un

j 1
Dx
Dt

(F M(un
j , un

j11) 2 F M(un
j21 , un

j )).and when all signal speeds are ,0,

F M(u, v) 5 f(v). Higher accuracy is obtained by a non-linear interpola-
tion procedure of either the fluxes [22] or the dependent

Marquina’s numerical flux (7) has a clear flux-splitting variables [10, 1] and a Runge–Kutta time-stepping proce-
structure, with dure [22].

There are a variety of reconstruction procedures avail-
F M(u, v) 5 F 1 1 F 2, able to increase the formal order of spatial accuracy of the

method. In our experiments, we have chosen the ENO
(essentially non-oscillatory) polynomials of Harten et al.where
[10], Van Leer’s piecewise linear reconstruction [24], and
Marquina’s piecewise hyperbolic method (PHM) [13].F 1 5 o f p

1(u, v)r p(u), F 2 5 o f p
2(u, v)r p(u) (8)

ENO techniques (including the PHM) use a local adap-
tive stencil to obtain information automatically from re-but notice that, here, the characteristic numerical fluxes
gions of smoothness when the solution develops disconti-f6 5 f6(u, v) depend (in a non-linear way) on the left
nuities. As a result, approximations using these methodsand right states.
can obtain uniformly high-order accuracy right up to theFor non-linear systems in which the flux function is ho-
discontinuities, while keeping a sharp, essentially non-os-mogeneous of degree one, such as the gas dynamics equa-
cillatory shock transition (see [13, 10] and referencestions for an ideal gas, Marquina’s formula reduces to the
therein).Steger–Warming flux vector split formula when there is

If R(?, un) is a reconstruction procedure that computesno change in sign in any of the eigenvalues.
an O(hp) approximation to u(x, tn) from the cell valuesIndeed, if f(u) 5 A(u) ? u then
hunj, then the pth-order version of the scheme based on
such a reconstruction procedure is obtained following af p

l 5 l p(ul) ? f(ul) 5 lp(ul) g p
l semi-discrete formulation, i.e.,

f p
r 5 l p(ur) ? f(ur) 5 lp(ur) g p

r ;
d
dt

uj(t) 5
1

Dx
[f̃j11/2 2 f̃j21/2], (9)thus, when lp(ul) ? lp(ur) $ 0, p 5 1 ? ? ? m,

f p
1 5 max(lp(ul), 0) ? g p

l 5 l1
p (ul) ? g p

l where

f p
2 5 min(lp(ur), 0) ? g p

r 5 l2
p (ur) ? g p

r
f̃j11/2 5 F(R(xj11/2 2 0; u(t)), R(xj11/2 1 0; u(t)))

and
and F(u1 , u2) is the exact or approximate Riemann solver
flux to be used.F 1 5 o f p

1r p(ul) 5 o l1
p (ul)g p

l ? r p(ul) 5 A1(ul) ? ul
Considering (9) to be a system of ordinary differential

F 2 5 o f p
2r p(ur) 5 o l2

p (ur)g p
r ? r p(ur) 5 A2(ur) ? ur equations in t for the vector u(t) 5 huj(t)j, we solve the

problem using a numerical ODE solver. In particular, in
our experiments we use Shu and Osher [22] TVD Runge–with A1and A2 defined as usual (see, e.g., [23]).

When the eigenvalue corresponding to a characteristic Kutta solvers of second and third order.
We recall (see [10, 13]) that these scalar reconstructionsfield changes sign across a given interface, F 1 and F 2 in

(8) will depend on both the left and right states and these are non-oscillatory only if the discontinuities are separated
by at least r 1 1 points of smoothness, where r is thetwo flux formulae take different values.

For the equations of ideal gas dynamics Marquina’s flux order of accuracy of the reconstruction. Consequently, a
component-by-component reconstruction procedure mayformula and Steger–Warming flux vector split formula

yield, thus, similar results in most situations. However, we cease to be non-oscillatory around the discrete set of points
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where discontinuities of the solution interact and can pro- For Burgers equation fu 5 u and it is easy to check that
( f 1)9 $ 0 and ( f 2)9 # 0. Equation (13) provides, thus, aduce ‘‘noise’’ around this set of points. One can largely
flux-splitting scheme for Burgers equation with the usualavoid the noise derived from this fact by applying the
definitions.reconstruction procedure to the ‘‘local characteristic vari-

To begin, let us consider the following IVP:ables’’ (see [10]).
In [22], Shu and Osher use the moving-stencil idea di-

rectly on numerical fluxes to get ENO schemes without ut 1 Su2

2 Dx
5 0

(14)

using cell-averages. For systems, the reconstruction proce-
dure is applied in each ‘‘local characteristic field,’’ and the
starting point in the choice of stencil process has to be done
in an ‘‘upwind’’ way. We refer to [22] for further details. u(x, 0) 55

21 if x , 20.5

1 if 20.5 , x , 0.5

21 if x . 0.5.
We have implemented the higher order versions of the

method following both approaches obtaining very simi-
lar results. Its solution consists of a centered rarefaction wave that

contains a sonic point at x 5 20.5 and a stationary shock
3. THE SCALAR CONSERVATION LAW wave located at x 5 0.5. Figure 1 shows the approximate

solutions obtained with each scheme.
In this section we discuss the differences between the Since f (21) 5 f (1), Roe’s scheme without an entropy

Shu–Osher F RF flux formula (4), i.e., Marquina’s flux for- fix would substitute the rarefaction wave by an unphysical
mula for scalar equations and other well-known upwind stationary expansion shock. As observed in Fig. 1, both
schemes on the basis of the inviscid Burgers equation. entropy corrections to Roe’s scheme (F RH and F RF) give

We shall consider the schemes of Roe, with Harten– absolutely similar computational results in the rarefac-
Hyman entropy fix [7] (R-H), Engquist-Osher (E-O), and tion area.
a flux-splitting scheme (labeled S-W). We observe an O(Dx) glitch at the sonic point. This is

For Burgers equation, the fluxes corresponding to the to be expected, since only the sonic flux (the flux at the
R-H and E-O methods can be expressed as follows (see, interface across which the characteristic speed changes
e.g., [12, 25]): sign) is modified (see Roe [20]). Notice that the dogleg

effect at the sonic point is more acute in the E-O and flux-
splitting schemes.

As noticed in [25], since the shock at x 5 0.5 stands
exactly on a cell boundary, the numerical solution obtainedF RH(ul , ur) 55

0.5u2
l 1

ur 2 â
ur 2 ul

(ur 2 ul) if ul , 0 , ur

0.5u2
r if â , 0

0.5u2
l if â . 0

(10)
with Roe’s method gives a shock profile with no interior
points, while the E-O scheme produces two interior values.
Marquina’s scheme behaves here like the E-O scheme,

â 5 As (ur 1 ul) (11) while the flux-splitting scheme leads to a shock profile
smeared over twice as many computational cells.F EO(ul , ur) 5 As h(u1

l )2 1 (u2
r )2j. (12)

This example exhibits the behavior of Marquina’s
scheme as compared with the other three. Transonic rare-

We shall consider also a naı̈ve extension (or rather, a faction profiles are completely similar to those obtained
‘‘restriction’’) of Steger and Warming flux-vector split for- with Roe’s entropy-fixed scheme while transonic shock
mula [23] to Burgers equation, for which f (u) 5 1/2fuu ? profiles are similar to those obtained with the E-O scheme.
fuu. This flux vector is not a homogeneous function and For non-transonic shock profiles, as well as non-transonic
the analysis in [23] does not follow through. However, the rarefactions, the numerical solutions obtained with these
flux formula three schemes are similar, as observed in Fig. 2. The flux-

splitting scheme produces shock profiles with a larger de-
F SW(ul , ur) 5 As ( f (ul) 1 f (ur)

(13)
gree of smearing in all cases and poorer overall resolution.
Here, the solution at t 5 0 is as in (14) but with u(x, 0) 52 (u f 9(ur)u ? ur 2 u f 9(ul)u ? ul))
0.1 for x , 0.5, x . 0.5. Thus, neither the shock nor the
rarefaction wave cross the sonic point.

corresponds to the following splitting for the flux f (u)

4. SHOCK REFLECTIONS, OVERHEATING, AND
f (u) 5 f 1(u) 1 f 2(u) RELATED MATTERS

f 1(u) 5 As h f (u) 1 u fuuuj
We study now the problem of a strong shock reflecting

from a rigid wall. Conventional schemes applied to thisf 2(u) 5 As h f (u) 2 u fuuuj.
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FIG. 1. First-order numerical approximations to a solution of Burgers equation containing a transonic shock and a transonic rarefaction. The
solid line is the true solution. Marquina (top left); R-H (top right); E-O (bottom left); S-W (bottom right).

problem give numerical approximations with a consistent which introduces a heat conducting mechanism will, in
principle, be able to reduce or even eliminate the overheat-O(1) error in the density and internal energy next to the

wall. ing. Noh gives one such method in the artificial viscosity
context.Noh [15] investigated the ‘‘excess heating error’’ in the

context of the artificial viscosity approach. Noh defines Similar conclusions are attained by Menikoff in [14],
where a detailed analysis of the wall heating error (againthis error as the excess wall (or piston) heating, due to the

artificial viscosity terms which occurs on shock formation for artificial viscosity methods in Lagrangian and Eulerian
formulations) is performed. Menikoff’s argues that the nu-(e.g., at a rigid wall where a gas is brought to rest and

a shock propagated away, or at the sudden start up of merical error is due to the artificial shock width and it
mimics a real physical effect that has been observed ina piston).

This type of error occurs in the first few zones near the physical shock tubes. His line of reasoning leads him to
conjecture that all shock capturing schemes without sig-wall and shows up as a peak in the specific internal energy

(overheating) or, equivalently, a dip in the density. His nificant heat conduction will have the same type of qualita-
tive entropy error.analysis and experimentation leads him to conclude that

the error is inevitable because it is built into the exact Problems of this type have also been investigated by
Glaister for more general equations of state [6]. The samesolution to the differential equations defining the artificial

viscosity method. In fact he goes one step further and phenomenon can be observed in his experiments.
Let us consider the one-dimensional Euler equations ofargues that such an error will necessarily occur for any

shock-smearing method (in the absence of heat conduc- gas dynamics for a polytropic gas, i.e., (1) with
tion) whether the viscosity occurs explicitly in the method
or not.

u 5 ( r, M, E)T, f(u) 5 qu 1 (0, P, qP) (15)
In real fluids, heat conduction is present and this excess

wall heating would not occur (since any hot spot would be
quickly dissipated). Thus, Noh concludes that any method where r, q, M, E, and P are the density, velocity, moment,
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FIG. 2. First-order numerical approximations to a solution of Burgers equation containing non-transonic shock and rarefaction waves. The solid
line is the true solution. Marquina (top left); R-H (top right); E-O (bottom left); S-W (bottom right).

energy, and pressure, respectively, with the following initial P0 5 1023; r0 5 1; q0 5 1
conditions at t 5 0:

and the ideal gas equation of state with c 5 Gd.( r(x), q(x), P(x)) 5 ( r0 , q0 , P0), 0 , x , 1. (16)
Figure 3 displays numerical approximations obtained

with the first-order schemes of Marquina and Roe. It isThis represents a gas of constant density and pressure
worth noticing that the error at the bottom of the spikemoving towards x 5 1 (provided q0 . 0). The boundary
in the numerical approximation obtained with Marquina’sat x 5 1 is a rigid wall and the exact solution describes
solver is less than 1%. This should be compared with thethe shock reflection from the wall. The gas is brought to
10% error at the bottom of the spike obtained with Roe’srest at x 5 1 and, denoting the preshock values by (2)
scheme (or even with the 100% error obtained with theand the postshock values by (1) we can postulate an exact
standard artificial viscosity method [15]).solution of the form

The second- and third-order extensions of Marquina’s
flux formula lead to numerical solutions in which the patho-

r 5 r1, q 5 q1 5 0, P 5 P1 for (x 2 1)/t . S,
logical behavior at the wall is consistent with that of the

r 5 r2 5 r0 , q 5 q2 5 q0 , P 5 P2 5 P0 for (x 2 1)/t , S, first-order scheme. On the contrary, the higher order exten-
sions of Roe’s scheme produce also a spurious overshoot

where S, the speed at which the shock moves out of the before the final dip at the wall. Figure 4 shows a closeup
wall and into the computational domain, is given by the look at the wall. We observe, on the same scale, the differ-
Rankine–Hugoniot jump relations, i.e., ence in magnitude between the overheating obtained with

Roe’s scheme and its higher order versions and Marquina’s
scheme and its corresponding higher order extensions. No-S 5

[ ru]
[ r]

5
[P 1 ru2]

[ ru]
5

[u(e 1 P)]
[e]

.
tice that the numerical approximation obtained with Mar-
quina’s flux formula and the PHM provides the best reso-
lution.In our numerical experiments we take
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FIG. 3. First-order density profiles for the shock reflection problem: Roe left, Marquina right.

We can observe in Fig. 3 that the shock resolution in been obtained with Dt/Dx 5 0.2. We ran the test for values
of Dt/Dx ranging between 0.1 to 0.6 which correspond toMarquina’s first-order method is worse than in Roe’s

method. This is due to our implementation of Roe’s scheme Courant numbers between 0.15 and 0.75. We have found
that the value of the numerical solution at the wall iswhich does not incorporate an entropy fix (not necessary

in this case since the analytical solution does not contain slightly larger when the Courant number increases, but the
numerical values at the wall differ only about 0.2% at timesrarefaction waves). The reflecting boundary conditions im-

posed at the wall imply a sign change in the eigenvalue for which the shock has left the wall completely. When
the shock is formed, in the first steps of the computation,corresponding to the linearly degenerate field, which

makes Marquina’s scheme switch to the LLF flux formula. larger Courant numbers can lead to an increase of up to
2% in the numerical solution at the wall.This leads to the observed shock transition. In general

Roe’s method needs to incorporate an entropy correction The overheating error decreases with time and the de-
pendence of its magnitude with time is also quite mild. Forwhich would be turned on by the reflecting boundary con-

ditions at the wall and would also incorporate viscosity to example, for the first-order method the absolute value of
the difference between the computed values with Dt/Dx 5the shock, leading to a shock transition region similar to

that obtained with Marquina’s scheme. In any case the 0.4 at times t 5 0.8 and t 5 1.6 is about 0.015, which
represents a 0.4% variation in the value of the numericalthird-order versions of both methods only have two points

in the shock transition region. solution at the wall.
In the first few steps, Roe’s scheme estimates erron-Our experiments show a very mild dependency of the

magnitude of the error with respect to the Courant number. eously the shock speed, which is essentially wrong by O(1),
this in turn gives O(1) errors for the density. Roe’s schemeThe numerical approximations shown in Figs. 3 and 4 have

FIG. 4. A closer look to the overheating phenomenon: —— plain, s ENO2, * ENO3, ???, PHM.
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FIG. 5. Density smoothing due to the artificial heat conduction mechanism in Marquina’s scheme: s, t 5 1, *, t 5 4. First-order left, third-order right.

never recovers from these first steps errors because the tinguishable from those produced by Marquina’s flux for-
mula (Marquina’s scheme reduces to Steger–Warming’serror appears in the contact wave but, since the flow veloc-

ity is everywhere zero behind the shock wave, no dissipa- for the initial data considered in Fig. 5). This is an undesir-
able property when solving the Navier–Stokes equationstion is added via the contact wave to damp out the local

error at the wall. in a boundary layer, and one should be careful in using
the scheme in that situation. However, since the smoothingMarquina’s scheme introduces an effective coupling be-

tween the equations (via the a) that acts as a dissipative is less severe when we increase the order of the scheme,
its higher order versions might still be suitable.mechanism, reducing the length of the spike to computa-

tionally acceptable levels. Roe’s solver not only presents a local spike in the shock
reflection case, this behavior can also be observed whenBased on Noh’s observations, we could interpret the

behavior of the numerical solution obtained with Marqui- an initial discontinuity breaks into two rarefaction waves
moving in opposite directions, although in this case thena’s flux formula by saying that there may be an artificial

heat conduction mechanism built into Marquina’s solver use of any linearization (such as Roe’s) might lead to the
blow up of the scheme.which is responsible for the curbing of the spike.

It is well known (e.g., [9]) that flux-splitting schemes Einfeldt et al. show in [4] that certain choices of initial
data will inevitably give rise to instabilities with any at-cannot exactly resolve stationary discontinuities. Contact

discontinuities keep on spreading with the use of any split tempt to substitute linearized solutions because for these
data, any linearization will yield a negative density or pres-flux scheme.

It seems clear that Marquina’s scheme does have a built- sure. They express this fact by saying that certain Riemann
problems are not linearizable.in heat conduction mechanism. To test the influence the

flux formula has on stationary discontinuities we consider Following [4] we consider the following class of initial
data:the Riemann problem with left and right states given by

( rl 5 1, ql 5 0, pl 5 1) ( rr 5 2, qr 5 0, pr 5 1) (17)
( r(x), q(x), P(x)) 5H( r0, q0, P0), if x , 0.5;

( r0 , 2q0 , P0), if x $ 0.5.
(18)

whose solution is just a stationary (contact) discontinuity.
Of course, Roe’s scheme resolves perfectly this discontinu-
ity (by design). Marquina’s flux formula gives non-zero If q0 . 0, two shock waves are formed from the original

jump in velocity. They propagate from the center of thevalues when the velocity vanishes and the left and right
pressures are equal. The artificial heat conduction mecha- interval with constant velocities in opposite directions and

the gas remains at rest in between. This is a linearizablenism tends to smooth out the density.
The result of Marquina’s first-order accurate scheme is problem computationally equivalent to the shock reflection

test problem already analyzed.shown in Fig. 5. As we can see, the density is smoothed
with the number of time steps, a property which is shared Numerically, we observe the same type of behavior for

both schemes (Roe and Marquina’s) as in the previous testby most flux-vector-splitting schemes. In fact, the Steger–
Warming flux formula leads to numerical results for the (see Fig. 6). In our numerical experiments we have chosen

( r0 , q0 , P0) 5 (1, 4, 1) and Dt/Dx 5 0.1.two experiments considered so far that are virtually indis-
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FIG. 6. Collision of two shocks of equal strength. First-order (top) and third-order (PHM, bottom) density profiles: Roe left, Marquina right.

As before, the error at the bottom of the spike in Marqui- On the other hand, taking r0 5 1, q0 5 21, e0 5 5 as
initial data leads to a linearizable problem for which thena’s solver is less than 1%, while the third-order (PHM)

scheme has only a 0.3% error there. In this case, the hyper- density exhibits non-smooth behavior similar to the shock
reflection problem. As observed, the problem is alleviatedbolic reconstruction gives the best results, probably due to

its more local character. ENO reconstructions (not shown) by using Marquina’s solver. Although the behavior of the
numerical approximations obtained with the higher ordergive slight oscillations of the order of the local trunca-

tion error. extensions of Marquina’s scheme is not as good as in the
shock collision case, the density profiles are still smootherIf q , 0, the problem might not be linearizable, even

though it has a solution with positive density and internal than those obtained with Roe’s scheme (see Fig. 8).
energy. The reason for the failure of the linearization is the
occurrence of two rarefaction waves in the exact solution to
the Riemann problem. Einfeldt et al. consider the particu- 5. SLOWLY MOVING SHOCKS
lar case where r0 5 1, q0 5 22, e0 5 3. This Riemann
problem is not linearizable and Roe’s scheme blows up Another generic ‘‘deficiency’’ of most Godunov-type

schemes, is the generation of numerical errors which occursafter a few steps (but Roe’s scheme with Harten’s entropy
fix does not; see [4]). Marquina’s scheme behaves like the behind a nearly stationary shock. The phenomenon is in-

herent to nonlinear systems of equations (solutions ofHLLE scheme described by Einfeldt [3, 4] (see Fig. 7).
Figure 7 displays the numerical approximation obtained scalar conservation laws are perfectly well behaved) and

typically shows up as a long wavelength noise in the down-with an ENO linear reconstruction. This particular recon-
struction is also TVD (see [10] and references therein), a stream running wave family that is not effectively damped

by the dissipation of the scheme.property which is not shared by higher order ENO recon-
structions or Marquina’s PHM. For this experiment, our Woodward and Colella [1, 28] were among the first to

point out this deficiency for the first-order method of Go-third-order methods have failed, probably due to the al-
most vacuum conditions of the solution near x 5 0.5. dunov and MUSCL, one of its second-order extensions.
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FIG. 7. A non-linearizable Riemann problem. First-order (top) and second-order (ENO-2, bottom) density and velocity profiles (left and
right, respectively).

In [1] these authors give a heuristic explanation for the Roberts [19] observes, as do Jin and Liu [11], that the
noise cannot be eliminated by appealing to TVD concepts.noise generation phenomenon and propose a ‘‘cure’’: the

addition of a small amount of artificial dissipation to the In fact, higher order versions of Godunov’s or Roe’s
scheme accentuate the problem; the noise is preserved forunderlying scheme.

Roberts [19] performs a deeper analysis of the phenome- an even longer distance than in the first-order solution.
Quirk [17] reports similar low frequency, postshock os-non and shows that the cause of the noise generation is

linked to the nature of the discrete shock structure pro- cillations in slowly moving shock waves computed with
Einfeld’s HLLE scheme [3].duced by a given scheme. Thus, each particular scheme

has a different level of this ‘‘noise.’’ In fact, it is shown in We shall consider the Riemann problem for the Euler
equations for an ideal gas (c 5 1.4) with left and right[18] that the performance of Osher’s scheme at a slowly

moving shock wave is better than that of Godunov or Roe. states given by (Quirk [17]):
Roberts thus concludes by suggesting that numerical flux

( rl 5 3.86, ql 5 20.81, pl 5 10.33)
(19)formulas that recognize the analytical shock jump condi-

tions (such as Godunov’s, or Roe’s) might be less appro- ( rr 5 1, qr 5 23.44, pr 5 1).
priate for shock capturing than other formulas that do not
explicitly recognize those jumps. Our numerical solutions are shown after 4000 iterations,

after which the shock has crossed about 42 cells.In the process of revising this paper for final publication,
Osher drew our attention to related work by Jin and Liu We can observe in Fig. 9 that the noise generation and

transport phenomenon is less acute in Marquina’s scheme.[11] on the noise generation at slowly moving shock waves.
In Jin and Liu’s work, the oscillations are identified as the It is reasonable to think that the heat conduction mecha-

nism is responsible for the additional dissipation thateffect of diffusion waves, associated to a given characteris-
tic family, whose influence is non-negligible when the shock damps out the downstream noise to computationally ac-

ceptable levels.speed is small.
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FIG. 8. Non-smooth density behavior in the separation of two rarefaction waves. First-order (top) and third-order (PHM middle and ENO-3
bottom) density profiles; Marquina left, Roe right.

As observed by Roberts [19], the noise is preserved has proven to be a useful test for a large number of methods
over the years.further downstream in higher order extensions of Roe’s

scheme. On the other hand, the PHM in Marquina’s The problem begins with a uniform Mach 3 flow in a
scheme leads to a higher order method with, essentially, tunnel containing a step. The tunnel is 3 units long and 1
the same properties, with respect to the noise phenomenon, unit wide. The step is 0.2 units high and is located 0.6 units
as the first-order approximation (see Fig. 10). from the left-hand end of the tunnel. An inflow boundary

condition is applied at the left end of the computational6. A TWO-DIMENSIONAL TEST
domain and outflow boundary conditions are applied at
the right end. Along the walls of the tunnel we applyIn this section we consider a two-dimensional test prob-
reflecting boundary conditions.lem introduced by Emery [5] almost 30 years ago, but that
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FIG. 9. A slowly moving shock wave: first-order (top) and third-order (PHM, bottom) density profiles: Marquina right, Roe left.

Initially, the wind tunnel is filled with a gamma-law capturing schemes applied to it. We refer the interested
reader to this paper (and references therein) for furthergas, with c 5 1.4, which everywhere has density 1.4,

pressure 1.0, and velocity 3. Gas with this density, pres- details and comparisons.
The density distribution is the hardest to compute due,sure, and velocity is continually fed in from the left-

hand boundary. on one hand, to the Mach stem at the upper wall and
the contact discontinuity it generates and, on the otherThis test problem receives detailed attention in [28],

where the authors analyze the behavior of various shock hand, to the corner of the step, which is a singularity

FIG. 10. A closer look at the noise in a slowly moving shock.
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cal approximations obtained with Marquina’s scheme and
Fig. 12 shows those obtained with Roe’s scheme

By time t 5 4, nearly all the shocks in this problem
are moving very slowly. In particular, the bow shock is
nearly aligned with the grid near the bottom wall, leading
to a scenario like the one described in Section 5. The
postshock oscillations are more visible when using Van
Leer’s piecewise linear reconstruction [24].

The Mach stem in Roe’s approximation appears se-
verely distorted by a ‘‘double kink.’’ This phenomenon
is not dissimilar to the ‘‘carbuncle,’’ a recognized defi-
ciency of Roe’s scheme observed in steady-state blunt
body calculations [18].

To eliminate the ‘‘carbuncle’’ produced in Roe’s
scheme one has to artificially add dissipation to the
scheme. Peery and Imlay [18] do so by an appropriate
smoothing of the eigenvalues of the Roe matrix. Quirk
[17] reports that applying Harten’s entropy fix to the
contact and shear waves also fixes the problem. Both
alternatives become a convenient way to introduce a
small (but sufficient) amount of artificial dissipation into
the scheme.FIG. 11. Contour plots of numerical approximations to the density

As in our one-dimensional tests, Marquina’s schemeobtained with Marquina’s scheme. First order (a), MUSCL (b), PHM (c).
seems to introduce the right amount of dissipation to
eliminate the undesired pathologies, while keeping, at
the same time, sharp shock structures.

For the sake of comparison, Fig. 13 shows first andof the boundary of the domain and the center of a
rarefaction fan, i.e., a singular point of the flow. third (PHM) numerical approximations obtained with

our two-dimensional version of the flux vector splittingWoodward and Colella [28] realize that numerical
errors generated in the neighborhood of this singular
point can seriously affect the global flow. As pointed
out in [28], when an approximate Riemann solver is
used, the entropy tends to grow near the corner and
along the sonic line starting at the corner. If nothing is
done, a numerical boundary layer in density, of about
one to two zones, builds up and the magnitude of the
two components of the velocity decreases along the top
of the step, hence changing the quality of the flow.

In an attempt to minimize numerical errors generated
at the corner of the step, Woodward and Colella propose
an additional boundary condition to be applied near the
corner of the step, in order to maintain a steady flow
around this singular point. Our experimentation confirms
Woodward and Colella’s remarks. A detailed treatment
of the corner correction is given in the Appendix.

Our numerical tests are run on an equally spaced grid
with hx 5 hy 5 1/40 and we show numerical approxima-
tions to the density profile at time t 5 4, when the flow
has a rich and interesting structure. The extension to
two dimensions is done by the usual dimensional split-
ting technique.

Each plot in Figs. 11 and 12 displays 30 equally
spaced level curves between the minimum and maximum FIG. 12. Contour plots of numerical approximations to the density

obtained with Roe’s scheme.values of the computed density. Figure 11 shows numeri-
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APPENDIX: DISCUSSION OF THE
CORNER TREATMENT

In order to go further into the discussion of the influence
of the corner treatment in Emery’s test, we shall explain
in detail the process introduced in [28] and outlined in [21]
(where we have observed various typographical errors).

We shall perform two successive corrections on certain
cells, which we call ‘‘b,’’ above the step; using the values
of the variables at the cell located just to the left and below
the corner, we call this cell ‘‘a’’ (as in [21]). The ‘‘b’’ cells
are the first four cells of the first row above the step starting
just to the right of the corner, and the first two cells of the
second row above, also starting from the right.

The corrections should be as follows:

• Entropy correction. In each ‘‘b’’ cell, we reset the
density in order for the adiabatic constant in cell ‘‘b,’’ to
be the same as in cell ‘‘a,’’

FIG. 13. Contour plots of numerical approximations to the density
obtained with Steger and Warming’s scheme.

rb 5 ra SPb

Pa
D1/c

. (20)

scheme of Steger and Warming. The behavior of the
• Enthalpy correction. Using the reset density value,first-order scheme (for this resolution) is similar to the

we correct the enthalpy in ‘‘b’’ cells, by changing the magni-one obtained with Marquina’s and Roe’s schemes; how-
tudes of the velocities (not their directions!) as follows:ever, there are no traces of the contact discontinuity

There is always a nonnegative constant a such thatemerging from the three-shock interaction in the third-
order approximation. Also, Marquina’s scheme seems to

Ha 5 H a
b , (21)lead to a smoother behavior in the rarefaction fan in

this case.
where Ha is the enthalpy in cell ‘‘a,’’ and

7. CONCLUSIONS

H a
b 5

c2
b

(c 2 1)
1

1
2

aq2
b (22)We extend to the systems a numerical flux formula pro-

posed by Shu and Osher [22] for scalar equations. The
extension is made in each local characteristic field and

with q2
b being the sum of the squares of the original compo-

does not need a mean state (such as Roe’s average or the
nents of the velocity in cell ‘‘b,’’ and cb being the sound

arithmetic mean) which turns out to be useful in certain
velocity computed from the new value of the density also

situations, where even an approximate solution to the Rie-
in cell ‘‘b.’’ Equation (21) is just Bernouilli’s law for steady

mann problem is difficult to compute.
flow (see [2]), and it always has a nonnegative solution for

Marquina’s flux formula seems to introduce a dissipative
a, because the value of the density in ‘‘b’’ cells is never

mechanism into the numerical scheme which, in turn, pro-
larger than the value in cell ‘‘a.’’

duces numerical approximations with a smoother behavior
than those obtained with Roe’s scheme, while keeping, Indeed, if A 5 Pa/rc

a is the adiabatic constant in cell ‘‘a,’’
essentially, the sharp shock resolution of this method. In then, because of the entropy correction performed before,
particular, the overheating phenomenon observed near the we have that A 5 Pb/rc

b , and, therefore, a is nonnegative
piston wall in shock reflection experiments is greatly re- and defined by
duced, as well as the long wavelength noise behind slowly
moving shock waves.

Preliminary experimentation in two dimensions seems a 5 F1
2

q2
a 1

c
c 2 1

A( rc21
a 2 rc21

b )G@1
2

q2
b . (23)

to indicate that the dissipation of the scheme is sufficient
to eliminate undesired pathologies like the carbuncle phe-
nomenon. We then reset the vector u in each ‘‘b’’ cell to
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to the application of the corner treatment and 14b is with-
out this treatment.

We have observed that, when no treatment is applied,
the value of the enthalpy above and near the corner is
slightly smaller than the value at the left of the corner.
Thus the fluid there is almost steady; however, the entropy
is clearly violated and we get pictures analogous to the
ones presented in [27].

The reason we need to apply the two corrections is that
if only the entropy is corrected then the flow near the
corner becomes far from steady, and the enthalpy is
abruptly going down at the right of the sonic line (see
Fig. 15).

The section y 5 0.2 of the adiabatic constant is shown
in Fig. 15 for both cases. We observe a strong entropy
violation at x 5 0.6, the abscissa of the corner. This sectionFIG. 14. Contour plots of the adiabatic constant P/rc. Notice the

entropy violation at the corner of the step without the corner treat- can be considered nearly a streamline of the flow.
ment (bottom). We consider this a fair numerical test in order to evaluate

the reliability of the numerical approximation. We have
computed numerical approximations to the solution of this
problem using our solver with a finer grid (e.g., 240 3 80),Srb , Ïa(qb)x , Ïa(qb)y ,

1
c 2 1

rb 1
1
2

rbaq2
bD . (24)

and the profiles obtained are consistent with the features
presented with the 120 3 40 grid and the order of accu-If these two successive corrections are not applied the
racy used.adiabatic constant (and a fortiori the entropy) is violated

along the streamlines just above the step.
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92, 273 (1991).

5. A. F. Emery, J. Comput. Phys. 2, 306 (1968).

6. P. Glaister, J. Comput. Phys. 74, 382 (1988).

7. A. Harten and J. M. Hyman, J. Comput. Phys. 50, 235 (1983).

8. A. Harten, J. M. Hyman, and P. D. Lax, Commun. Pure Appl. Math.
29, 297 (1976).

9. A. Harten, P. D. Lax, and B. van Leer, SIAM Rev. 25, 35 (1983).

10. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, J. Comput.
Phys. 71(2), 231 (1987).

11. S. Jin and J. G. Liu, reprint.

12. R. J. Leveque, Numerical methods for Conservation Laws (Birk-
hauser, Zurich, 1990).

13. A. Marquina, UCLA CAM Report No. 25-(1989); SIAM J. Sci. Com-
put. 15, 892 (1994).

14. R. Menikoff, SIAM J. Sci. Comput. 15, 1242 (1994).FIG. 15. One-dimensional section cuts, at the corner of the step, for
the adiabatic constant and the enthalpy. 15. W. F. Noh, J. Comput. Phys. 72, 78 (1987).



58 DONAT AND MARQUINA

16. S. Osher and F. Solomon, Math. Comput. 38, 339 (1982). 24. B. Van Leer, J. Comput Phys. 32, 101 (1979).

25. B. Van Leer, SIAM J. Sci. Stat. Comput. 5, 1 (1984).17. J. Quirk, Int. J. Numer. Methods Fluids 18, 555 (1994); ICASE Rep.
92-64, 1992. 26. B. Van Leer, ‘‘Flux-Vector Splitting for the Euler Equations,’’ in

8th International Conference on Numerical Methods for Engineering,18. K. M. Peery and S. T. Imlay, AAIA Paper 88-2904 (unpublished).
Aachen, June 1982.19. T. W. Roberts, J. Comput. Phys. 90, 141 (1990).

27. P. R. Woodward and P. Colella, ‘‘High Resolution Difference Scheme20. P. L. Roe, SIAM J. Sci. Comput. 13(2), 611 (1992).
for Compressible Gas Dynamics,’’ in ‘‘Seventh International Conf.

21. R. Sanders and A. Weiser, J. Comput. Phys. 101, 314 (1992). on Numer. Methods in Fluid Dynamics, Lecture Notes in Physics,
22. C. W. Shu and S. J. Osher, J. Comput. Phys. 83, 32 (1989). Vol. 141, pp. 434-441, (Springer-Verlag, New York/Berlin, 1981).

28. P. R. Woodward and P. Colella, J. Comput. Phys. 54, 115 (1984).23. J. Steger and R. F. Warming, J. Comput. Phys. 40, 263 (1981).


